Exercise 9

Solve the differential equation.

$$
\frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}-6 y=1+e^{-2 x}
$$

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
\frac{d^{2} y_{c}}{d x^{2}}-\frac{d y_{c}}{d x}-6 y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE with constant coefficients, so it has solutions of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad \frac{d y_{c}}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y_{c}}{d x^{2}}=r^{2} e^{r x}
$$

Substitute these formulas into the ODE.

$$
r^{2} e^{r x}-r e^{r x}-6\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-r-6=0
$$

Solve for r.

$$
\begin{gathered}
(r-3)(r+2)=0 \\
r=\{-2,3\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-2 x}$ and $e^{3 x}$. According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
y_{c}(x)=C_{1} e^{-2 x}+C_{2} e^{3 x}
$$

C_{1} and C_{2} are arbitrary constants. On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
\frac{d^{2} y_{p}}{d x^{2}}-\frac{d y_{p}}{d x}-6 y_{p}=1+e^{-2 x} \tag{3}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 0 and an exponential, the particular solution would be $y_{p}=A+B e^{-2 x}$. $e^{-2 x}$ is already part of y_{c}, though, so an extra factor of x on the exponential is needed: $y_{p}=A+B x e^{-2 x}$.

$$
y_{p}=A+B x e^{-2 x} \rightarrow \frac{d y_{p}}{d x}=B e^{-2 x}-2 B x e^{-2 x} \quad \rightarrow \quad \frac{d^{2} y_{p}}{d x^{2}}=-2 B e^{-2 x}-2 B e^{-2 x}+4 B x e^{-2 x}
$$

Substitute these formulas into equation (3).

$$
\left(-2 B e^{-2 x}-2 B e^{-2 x}+4 B x e^{-2 x}\right)-\left(B e^{-2 x}-2 B x e^{-2 x}\right)-6\left(A+B x e^{-2 x}\right)=1+e^{-2 x}
$$

Simplify the left side.

$$
(-6 A)+(-5 B) e^{-2 x}=1+e^{-2 x}
$$

Match the coefficients to get a system of equations for A and B.

$$
\begin{aligned}
-6 A & =1 \\
-5 B & =1
\end{aligned}
$$

Solving it yields

$$
A=-\frac{1}{6} \quad \text { and } \quad B=-\frac{1}{5} .
$$

The particular solution is then

$$
\begin{aligned}
y_{p} & =A+B x e^{-2 x} \\
& =-\frac{1}{6}-\frac{1}{5} x e^{-2 x} .
\end{aligned}
$$

Therefore, the general solution to the original ODE is

$$
\begin{aligned}
y & =y_{c}+y_{p} \\
& =C_{1} e^{-2 x}+C_{2} e^{3 x}-\frac{1}{6}-\frac{1}{5} x e^{-2 x} .
\end{aligned}
$$

